[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]

graph_agglomerative_clustering.cxx VIGRA

Segment an image by hierarchical clustering on top of watershed superpixels
Usage: subimage_tutorial infile outfile

#include <iostream>
#include <vigra/multi_array.hxx>
#include <vigra/impex.hxx>
#include <vigra/multi_resize.hxx>
#include <vigra/colorconversions.hxx>
#include <vigra/multi_convolution.hxx>
#include <vigra/multi_watersheds.hxx>
#include <vigra/multi_gridgraph.hxx>
#include <vigra/accumulator.hxx>
#include <vigra/adjacency_list_graph.hxx>
#include <vigra/graph_algorithms.hxx>
#include <vigra/hierarchical_clustering.hxx>
#include <vigra/metrics.hxx>
using namespace vigra;
int main (int argc, char ** argv)
{
// parameters of the hierarchical clustering algorithm
float sigmaGradMag = 3.0f; // scale of the Gaussian gradient
float beta = 0.5f; // importance of node features relative to edge weights
float wardness = 0.8f; // importance of cluster size
int numClusters = 30; // desired number of resulting regions (clusters)
if(argc != 3)
{
std::cout << "Usage: " << argv[0] << " infile outfile" << std::endl;
std::cout << "(supported formats: " << impexListFormats() << ")" << std::endl;
std::cout << "(only color images)" << std::endl;
return 1;
}
try
{
// read metadata of image file given in argv[1]
ImageImportInfo info(argv[1]);
vigra_precondition(info.numBands() == 3, "an RGB image is required.");
// instantiate image arrays of appropriate size
MultiArray<2, TinyVector<float, 3> > imageArrayRGB(info.shape()),
imageArrayLab(info.shape());
// read image data
importImage(info, imageArrayRGB);
// convert to Lab color space for better color similarity estimates
transformMultiArray(imageArrayRGB, imageArrayLab, RGB2LabFunctor<float>());
// compute gradient magnitude as an indicator of edge strength
MultiArray<2, float> gradMag(imageArrayLab.shape());
gaussianGradientMagnitude(imageArrayLab, gradMag, sigmaGradMag);
// create watershed superpixels with the fast union-find algorithm;
// we use a NodeMap (a subclass of MultiArray) to store the labels so
// that they can be passed to hierarchicalClustering() directly
MultiArray<2, unsigned int> labelArray(gradMag.shape());
unsigned int max_label =
WatershedOptions().unionFind());
// double the image resolution for better visualization of the results
MultiArray<2, TinyVector<float, 3> > imageArrayBig(info.shape()*2-Shape2(1));
resizeMultiArraySplineInterpolation(imageArrayRGB, imageArrayBig);
// visualize the watersheds as a red overlay over the enlarged image
regionImageToCrackEdgeImage(labelArray, imageArrayBig,
RGBValue<float>( 255, 0, 0 ), EdgeOverlayOnly);
// create grid-graph of appropriate size
typedef GridGraph<2, undirected_tag > ImageGraph;
ImageGraph imageGraph(labelArray.shape());
// construct empty region adjacency graph (RAG) for the superpixels
typedef AdjacencyListGraph RAG;
RAG rag;
// create mapping 'affiliatedEdges' from edges in the RAG to
// corresponding edges in imageGraph and build the RAG
RAG::EdgeMap<std::vector<ImageGraph::Edge>> affiliatedEdges(rag);
makeRegionAdjacencyGraph(imageGraph, labelArray, rag, affiliatedEdges);
// create edge maps for weights and lengths of the RAG edges (zero initialized)
RAG::EdgeMap<float> edgeWeights(rag),
edgeLengths(rag);
// iterate over all RAG edges (this loop follows a standard LEMON idiom)
for(RAG::EdgeIt rag_edge(rag); rag_edge != lemon::INVALID; ++rag_edge)
{
// iterate over all grid edges that constitute the present RAG edge
for(unsigned int k = 0; k < affiliatedEdges[*rag_edge].size(); ++k)
{
// look up the current grid edge and its end points
auto const & grid_edge = affiliatedEdges[*rag_edge][k];
auto start = imageGraph.u(grid_edge),
end = imageGraph.v(grid_edge);
// compute gradient by linear interpolation between end points
double grid_edge_gradient = 0.5 * (gradMag[start] + gradMag[end]);
// aggregate the total
edgeWeights[*rag_edge] += grid_edge_gradient;
}
// the length of the RAG edge equals the number of constituent grid edges
edgeLengths[*rag_edge] = affiliatedEdges[*rag_edge].size();
// define edge weight by the average gradient
edgeWeights[*rag_edge] /= edgeLengths[*rag_edge];
}
// determine size and average color of each superpixel
using namespace acc;
AccumulatorChainArray<CoupledArrays<2, TinyVector<float, 3>, unsigned int>,
Select<DataArg<1>, LabelArg<2>, // where to look for data and region labels
Count, Mean> > // what statistics to compute
features;
extractFeatures(imageArrayLab, labelArray, features);
// copy superpixel features into NodeMaps to be passed to hierarchicalClustering()
RAG::NodeMap<TinyVector<float, 3>> meanColor(rag);
RAG::NodeMap<unsigned int> regionSize(rag);
for(unsigned int k=0; k<=max_label; ++k)
{
meanColor[k] = get<Mean>(features, k);
regionSize[k] = get<Count>(features, k);
}
// create a node map for the new (clustered) region labels and perform
// clustering to remove unimportant watershed edges
RAG::NodeMap<unsigned int> nodeLabels(rag);
hierarchicalClustering(rag, // input: the superpixel adjacency graph
edgeWeights, edgeLengths, meanColor, regionSize, // features
nodeLabels, // output: a cluster labeling of the RAG
ClusteringOptions().minRegionCount(numClusters)
.nodeFeatureImportance(beta)
.sizeImportance(wardness)
.nodeFeatureMetric(metrics::L2Norm)
);
// create label image with the new labels
transformMultiArray(labelArray, labelArray,
[&nodeLabels](unsigned int oldlabel)
{
return nodeLabels[oldlabel];
});
// visualize the salient edges as a green overlay
regionImageToCrackEdgeImage(labelArray, imageArrayBig,
RGBValue<float>( 0, 255, 0), EdgeOverlayOnly);
// write result into image file given by argv[2]
exportImage(imageArrayBig, argv[2]);
}
catch (std::exception & e)
{
// catch any errors that might have occurred and print their reason
std::cout << e.what() << std::endl;
return 1;
}
return 0;
}

© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de)
Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

html generated using doxygen and Python
vigra 1.11.1 (Fri May 19 2017)