[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]
RandomForest< LabelType, PreprocessorTag > Class Template Reference |
Random forest version 2 (see also vigra::rf3::RandomForest for version 3) More...
#include <vigra/random_forest.hxx>
Public Member Functions | |
Constructors | |
Note: No copy constructor specified as no pointers are manipulated in this class | |
RandomForest (Options_t const &options=Options_t(), ProblemSpec_t const &ext_param=ProblemSpec_t()) | |
default constructor More... | |
template<class TopologyIterator , class ParameterIterator > | |
RandomForest (int treeCount, TopologyIterator topology_begin, ParameterIterator parameter_begin, ProblemSpec_t const &problem_spec, Options_t const &options=Options_t()) | |
Create RF from external source. More... | |
Data Access | |
data access interface - usage of member variables is deprecated | |
ProblemSpec_t const & | ext_param () const |
return external parameters for viewing More... | |
void | set_ext_param (ProblemSpec_t const &in) |
set external parameters More... | |
Options_t & | set_options () |
access random forest options More... | |
Options_t const & | options () const |
access const random forest options More... | |
DecisionTree_t const & | tree (int index) const |
access const trees | |
DecisionTree_t & | tree (int index) |
access trees | |
int | feature_count () const |
return number of features used while training. | |
int | column_count () const |
return number of features used while training. More... | |
int | class_count () const |
return number of classes used while training. | |
int | tree_count () const |
return number of trees | |
Learning | |
Following functions differ in the degree of customization allowed | |
template<class U , class C1 , class U2 , class C2 , class Split_t , class Stop_t , class Visitor_t , class Random_t > | |
void | learn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &response, Visitor_t visitor, Split_t split, Stop_t stop, Random_t const &random) |
learn on data with custom config and random number generator More... | |
template<class U , class C1 , class U2 , class C2 , class Split_t , class Stop_t , class Visitor_t > | |
void | learn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &response, Visitor_t visitor, Split_t split, Stop_t stop) |
template<class U , class C1 , class U2 , class C2 , class Visitor_t > | |
void | learn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &labels, Visitor_t visitor) |
template<class U , class C1 , class U2 , class C2 , class Visitor_t , class Split_t > | |
void | learn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &labels, Visitor_t visitor, Split_t split) |
template<class U , class C1 , class U2 , class C2 > | |
void | learn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &labels) |
learn on data with default configuration More... | |
template<class U , class C1 , class U2 , class C2 , class Split_t , class Stop_t , class Visitor_t , class Random_t > | |
void | onlineLearn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &response, int new_start_index, Visitor_t visitor_, Split_t split_, Stop_t stop_, Random_t &random, bool adjust_thresholds=false) |
template<class U , class C1 , class U2 , class C2 > | |
void | onlineLearn (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &labels, int new_start_index, bool adjust_thresholds=false) |
template<class U , class C1 , class U2 , class C2 , class Split_t , class Stop_t , class Visitor_t , class Random_t > | |
void | reLearnTree (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &response, int treeId, Visitor_t visitor_, Split_t split_, Stop_t stop_, Random_t &random) |
template<class U , class C1 , class U2 , class C2 > | |
void | reLearnTree (MultiArrayView< 2, U, C1 > const &features, MultiArrayView< 2, U2, C2 > const &labels, int treeId) |
Prediction | |
template<class U , class C , class Stop > | |
LabelType | predictLabel (MultiArrayView< 2, U, C >const &features, Stop &stop) const |
predict a label given a feature. More... | |
template<class U , class C > | |
LabelType | predictLabel (MultiArrayView< 2, U, C >const &features) |
template<class U , class C > | |
LabelType | predictLabel (MultiArrayView< 2, U, C > const &features, ArrayVectorView< double > prior) const |
predict a label with features and class priors More... | |
template<class U , class C1 , class T , class C2 > | |
void | predictLabels (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &labels) const |
predict multiple labels with given features More... | |
template<class U , class C1 , class T , class C2 > | |
void | predictLabels (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &labels, LabelType nanLabel) const |
predict multiple labels with given features More... | |
template<class U , class C1 , class T , class C2 , class Stop > | |
void | predictLabels (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &labels, Stop &stop) const |
predict multiple labels with given features More... | |
template<class U , class C1 , class T , class C2 , class Stop > | |
void | predictProbabilities (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &prob, Stop &stop) const |
predict the class probabilities for multiple labels More... | |
template<class T1 , class T2 , class C > | |
void | predictProbabilities (OnlinePredictionSet< T1 > &predictionSet, MultiArrayView< 2, T2, C > &prob) |
template<class U , class C1 , class T , class C2 > | |
void | predictProbabilities (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &prob) const |
predict the class probabilities for multiple labels More... | |
template<class U , class C1 , class T , class C2 > | |
void | predictRaw (MultiArrayView< 2, U, C1 >const &features, MultiArrayView< 2, T, C2 > &prob) const |
Random forest version 2 (see also vigra::rf3::RandomForest for version 3)
<LabelType | = double> Type used for predicted labels. |
<PreprocessorTag | = ClassificationTag> Class used to preprocess the input while learning and predicting. Currently Available: ClassificationTag and RegressionTag. It is recommended to use Splitfunctor::Preprocessor_t while using custom splitfunctors as they may need the data to be in a different format. |
Simple usage for classification (regression is not yet supported): look at RandomForest::learn() as well as RandomForestOptions() for additional options.
Additional information such as Variable Importance measures are accessed via Visitors defined in rf::visitors. Have a look at rf::split for other splitting methods.
RandomForest | ( | Options_t const & | options = Options_t() , |
ProblemSpec_t const & | ext_param = ProblemSpec_t() |
||
) |
default constructor
options | general options to the Random Forest. Must be of Type Options_t |
ext_param | problem specific values that can be supplied additionally. (class weights , labels etc) |
RandomForest | ( | int | treeCount, |
TopologyIterator | topology_begin, | ||
ParameterIterator | parameter_begin, | ||
ProblemSpec_t const & | problem_spec, | ||
Options_t const & | options = Options_t() |
||
) |
Create RF from external source.
treeCount | Number of trees to add. |
topology_begin | Iterator to a Container where the topology_ data of the trees are stored. Iterator should support at least treeCount forward iterations. (i.e. topology_end - topology_begin >= treeCount |
parameter_begin | iterator to a Container where the parameters_ data of the trees are stored. Iterator should support at least treeCount forward iterations. |
problem_spec | Extrinsic parameters that specify the problem e.g. ClassCount, featureCount etc. |
options | (optional) specify options used to train the original Random forest. This parameter is not used anywhere during prediction and thus is optional. |
ProblemSpec_t const& ext_param | ( | ) | const |
return external parameters for viewing
void set_ext_param | ( | ProblemSpec_t const & | in | ) |
set external parameters
in | external parameters to be set |
set external parameters explicitly. If Random Forest has not been trained the preprocessor will either ignore filling values set this way or will throw an exception if values specified manually do not match the value calculated & during the preparation step.
Options_t& set_options | ( | ) |
access random forest options
Options_t const& options | ( | ) | const |
access const random forest options
int column_count | ( | ) | const |
return number of features used while training.
deprecated. Use feature_count() instead.
void learn | ( | MultiArrayView< 2, U, C1 > const & | features, |
MultiArrayView< 2, U2, C2 > const & | response, | ||
Visitor_t | visitor, | ||
Split_t | split, | ||
Stop_t | stop, | ||
Random_t const & | random | ||
) |
learn on data with custom config and random number generator
features | a N x M matrix containing N samples with M features |
response | a N x D matrix containing the corresponding response. Current split functors assume D to be 1 and ignore any additional columns. This is not enforced to allow future support for uncertain labels, label independent strata etc. The Preprocessor specified during construction should be able to handle features and labels features and the labels. see also: SplitFunctor, Preprocessing |
visitor | visitor which is to be applied after each split, tree and at the end. Use rf_default() for using default value. (No Visitors) see also: rf::visitors |
split | split functor to be used to calculate each split use rf_default() for using default value. (GiniSplit) see also: rf::split |
stop | predicate to be used to calculate each split use rf_default() for using default value. (EarlyStoppStd) |
random | RandomNumberGenerator to be used. Use rf_default() to use default value.(RandomMT19337) |
void learn | ( | MultiArrayView< 2, U, C1 > const & | features, |
MultiArrayView< 2, U2, C2 > const & | labels | ||
) |
learn on data with default configuration
features | a N x M matrix containing N samples with M features |
labels | a N x D matrix containing the corresponding N labels. Current split functors assume D to be 1 and ignore any additional columns. this is not enforced to allow future support for uncertain labels. |
learning is done with:
void reLearnTree | ( | MultiArrayView< 2, U, C1 > const & | features, |
MultiArrayView< 2, U2, C2 > const & | response, | ||
int | treeId, | ||
Visitor_t | visitor_, | ||
Split_t | split_, | ||
Stop_t | stop_, | ||
Random_t & | random | ||
) |
LabelType predictLabel | ( | MultiArrayView< 2, U, C >const & | features, |
Stop & | stop | ||
) | const |
predict a label given a feature.
features | a 1 by featureCount matrix containing data point to be predicted (this only works in classification setting) |
stop | early stopping criterion |
LabelType predictLabel | ( | MultiArrayView< 2, U, C > const & | features, |
ArrayVectorView< double > | prior | ||
) | const |
predict a label with features and class priors
features | same as above. |
prior | iterator to prior weighting of classes |
void predictLabels | ( | MultiArrayView< 2, U, C1 >const & | features, |
MultiArrayView< 2, T, C2 > & | labels | ||
) | const |
predict multiple labels with given features
features | a n by featureCount matrix containing data point to be predicted (this only works in classification setting) |
labels | a n by 1 matrix passed by reference to store output. |
If the input contains an NaN value, an precondition exception is thrown.
void predictLabels | ( | MultiArrayView< 2, U, C1 >const & | features, |
MultiArrayView< 2, T, C2 > & | labels, | ||
LabelType | nanLabel | ||
) | const |
predict multiple labels with given features
features | a n by featureCount matrix containing data point to be predicted (this only works in classification setting) |
labels | a n by 1 matrix passed by reference to store output. |
nanLabel | label to be returned for the row of the input that contain an NaN value. |
void predictLabels | ( | MultiArrayView< 2, U, C1 >const & | features, |
MultiArrayView< 2, T, C2 > & | labels, | ||
Stop & | stop | ||
) | const |
predict multiple labels with given features
features | a n by featureCount matrix containing data point to be predicted (this only works in classification setting) |
labels | a n by 1 matrix passed by reference to store output. |
stop | an early stopping criterion. |
void predictProbabilities | ( | MultiArrayView< 2, U, C1 >const & | features, |
MultiArrayView< 2, T, C2 > & | prob, | ||
Stop & | stop | ||
) | const |
predict the class probabilities for multiple labels
features | same as above |
prob | a n x class_count_ matrix. passed by reference to save class probabilities |
stop | earlystopping criterion |
When a row of the feature array contains an NaN, the corresponding instance cannot belong to any of the classes. The corresponding row in the probability array will therefore contain all zeros.
void predictProbabilities | ( | MultiArrayView< 2, U, C1 >const & | features, |
MultiArrayView< 2, T, C2 > & | prob | ||
) | const |
predict the class probabilities for multiple labels
features | same as above |
prob | a n x class_count_ matrix. passed by reference to save class probabilities |
© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de) |
html generated using doxygen and Python
|