[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]

details MultiArrayView< N, T, StrideTag > Class Template Reference VIGRA

Base class for, and view to, vigra::MultiArray. More...

#include <vigra/multi_array.hxx>

Inheritance diagram for MultiArrayView< N, T, StrideTag >:
MultiArray< 1, double > MultiArray< 2, double > MultiArray< 2, int > MultiArray< 2, LabelInt > MultiArray< 4, double > MultiArray< DIM, int > MultiArray< dimensions, unsigned int > MultiArray< N+1, Multiband< T > > MultiArray< N, Chunk > MultiArray< N, Complex, FFTWAllocator< Complex > > MultiArray< N, Handle > MultiArray< N, std::size_t >

Public Types

enum  ActualDimension
 
typedef
StridedScanOrderIterator
< actual_dimension, T, T const
&, T const * > 
const_iterator
 
typedef const value_typeconst_pointer
 
typedef const value_typeconst_reference
 
typedef
vigra::detail::MultiIteratorChooser
< StrideTag >::template
Traverser< actual_dimension, T,
T const &, T const * >::type 
const_traverser
 
typedef MultiArrayShape
< actual_dimension >::type 
difference_type
 
typedef MultiArrayIndex difference_type_1
 
typedef
StridedScanOrderIterator
< actual_dimension, T, T &, T * > 
iterator
 
typedef difference_type key_type
 
typedef MultiArray< N, T > matrix_type
 
typedef value_typepointer
 
typedef value_typereference
 
typedef difference_type size_type
 
typedef
vigra::detail::MultiIteratorChooser
< StrideTag >::template
Traverser< actual_dimension, T,
T &, T * >::type 
traverser
 
typedef T value_type
 
typedef MultiArrayView< N, T,
StrideTag > 
view_type
 

Public Member Functions

bool all () const
 
bool any () const
 
iterator begin ()
 
const_iterator begin () const
 
template<unsigned int M>
MultiArrayView< N-1, T,
typename
vigra::detail::MaybeStrided
< StrideTag, M >::type > 
bind (difference_type_1 d) const
 
MultiArrayView< N-1, T,
StridedArrayTag
bindAt (difference_type_1 m, difference_type_1 d) const
 
MultiArrayView< N, typename
ExpandElementResult< T >::type,
StridedArrayTag
bindElementChannel (difference_type_1 i) const
 
template<int M, class Index >
MultiArrayView< N-M, T,
StridedArrayTag
bindInner (const TinyVector< Index, M > &d) const
 
MultiArrayView< N-1, T,
StridedArrayTag
bindInner (difference_type_1 d) const
 
template<int M, class Index >
MultiArrayView< N-M, T, StrideTag > bindOuter (const TinyVector< Index, M > &d) const
 
MultiArrayView< N-1, T, StrideTag > bindOuter (difference_type_1 d) const
 
difference_type_1 coordinateToScanOrderIndex (const difference_type &d) const
 
void copy (const MultiArrayView &rhs)
 
template<class U , class CN >
void copy (const MultiArrayView< N, U, CN > &rhs)
 
pointer data () const
 
MultiArrayView< 1, T,
StridedArrayTag
diagonal () const
 
difference_type_1 elementCount () const
 
iterator end ()
 
const_iterator end () const
 
MultiArrayView< N+1, typename
ExpandElementResult< T >::type,
StridedArrayTag
expandElements (difference_type_1 d) const
 
bool hasData () const
 
difference_type_1 height () const
 
template<class U >
MultiArrayViewinit (const U &init)
 
MultiArrayView< N+1, T, StrideTag > insertSingletonDimension (difference_type_1 i) const
 
bool isInside (difference_type const &p) const
 
bool isOutside (difference_type const &p) const
 
bool isUnstrided (unsigned int dimension=N-1) const
 
template<class U >
void meanVariance (U *mean, U *variance) const
 
void minmax (T *minimum, T *maximum) const
 
 MultiArrayView ()
 
template<class Stride >
 MultiArrayView (const MultiArrayView< N, T, Stride > &other)
 
 MultiArrayView (const difference_type &shape, const_pointer ptr)
 
 MultiArrayView (const difference_type &shape, const difference_type &stride, const_pointer ptr)
 
template<class ALLOC >
 MultiArrayView (BasicImage< T, ALLOC > const &image)
 
MultiArrayView< N, Multiband
< value_type >, StrideTag > 
multiband () const
 
NormTraits< MultiArrayView >
::NormType 
norm (int type=2, bool useSquaredNorm=true) const
 
 operator MultiArrayView< N, T, StridedArrayTag > () const
 
template<class U , class C1 >
bool operator!= (MultiArrayView< N, U, C1 > const &rhs) const
 
reference operator() (difference_type_1 x)
 
reference operator() (difference_type_1 x, difference_type_1 y)
 
reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z)
 
reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z, difference_type_1 u)
 
reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z, difference_type_1 u, difference_type_1 v)
 
const_reference operator() (difference_type_1 x) const
 
const_reference operator() (difference_type_1 x, difference_type_1 y) const
 
const_reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z) const
 
const_reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z, difference_type_1 u) const
 
const_reference operator() (difference_type_1 x, difference_type_1 y, difference_type_1 z, difference_type_1 u, difference_type_1 v) const
 
template<class U , class C1 >
MultiArrayViewoperator*= (MultiArrayView< N, U, C1 > const &rhs)
 
MultiArrayViewoperator*= (T const &rhs)
 
template<class Expression >
MultiArrayViewoperator*= (multi_math::MultiMathOperand< Expression > const &rhs)
 
template<class U , class C1 >
MultiArrayViewoperator+= (MultiArrayView< N, U, C1 > const &rhs)
 
MultiArrayViewoperator+= (T const &rhs)
 
template<class Expression >
MultiArrayViewoperator+= (multi_math::MultiMathOperand< Expression > const &rhs)
 
template<class U , class C1 >
MultiArrayViewoperator-= (MultiArrayView< N, U, C1 > const &rhs)
 
MultiArrayViewoperator-= (T const &rhs)
 
template<class Expression >
MultiArrayViewoperator-= (multi_math::MultiMathOperand< Expression > const &rhs)
 
template<class U , class C1 >
MultiArrayViewoperator/= (MultiArrayView< N, U, C1 > const &rhs)
 
MultiArrayViewoperator/= (T const &rhs)
 
template<class Expression >
MultiArrayViewoperator/= (multi_math::MultiMathOperand< Expression > const &rhs)
 
MultiArrayViewoperator= (MultiArrayView const &rhs)
 
template<class U , class C1 >
MultiArrayViewoperator= (MultiArrayView< N, U, C1 > const &rhs)
 
MultiArrayViewoperator= (value_type const &v)
 
template<class Expression >
MultiArrayViewoperator= (multi_math::MultiMathOperand< Expression > const &rhs)
 
template<class U , class C1 >
bool operator== (MultiArrayView< N, U, C1 > const &rhs) const
 
reference operator[] (const difference_type &d)
 
const_reference operator[] (const difference_type &d) const
 
template<int M>
MultiArrayView< N-M, T,
StridedArrayTag
operator[] (const TinyVector< MultiArrayIndex, M > &d) const
 
reference operator[] (difference_type_1 d)
 
const_reference operator[] (difference_type_1 d) const
 
MultiArrayView< N, T,
StridedArrayTag
permuteStridesAscending () const
 
MultiArrayView< N, T,
StridedArrayTag
permuteStridesDescending () const
 
template<class U >
product () const
 
void reset ()
 
difference_type scanOrderIndexToCoordinate (difference_type_1 d) const
 
const difference_typeshape () const
 
difference_type_1 shape (difference_type_1 n) const
 
difference_type_1 size () const
 
difference_type_1 size (difference_type_1 n) const
 
NormTraits< MultiArrayView >
::SquaredNormType 
squaredNorm () const
 
const difference_typestride () const
 
difference_type_1 stride (int n) const
 
MultiArrayView< N, T,
StridedArrayTag
stridearray (const difference_type &s) const
 
difference_type strideOrdering () const
 
MultiArrayView subarray (difference_type p, difference_type q) const
 
template<class U >
sum () const
 
template<class U , class S >
void sum (MultiArrayView< N, U, S > sums) const
 
void swap (MultiArrayView &other)
 
void swapData (MultiArrayView rhs)
 
template<class T2 , class C2 >
void swapData (MultiArrayView< N, T2, C2 > rhs)
 
MultiArrayView< N, T,
StridedArrayTag
transpose () const
 
MultiArrayView< N, T,
StridedArrayTag
transpose (const difference_type &permutation) const
 
traverser traverser_begin ()
 
const_traverser traverser_begin () const
 
traverser traverser_end ()
 
const_traverser traverser_end () const
 
difference_type_1 width () const
 

Static Public Member Functions

static difference_type strideOrdering (difference_type strides)
 

Protected Attributes

pointer m_ptr
 
difference_type m_shape
 
difference_type m_stride
 

Detailed Description

template<unsigned int N, class T, class StrideTag>
class vigra::MultiArrayView< N, T, StrideTag >

Base class for, and view to, vigra::MultiArray.

This class implements the interface of both MultiArray and MultiArrayView. By default, MultiArrayViews are tagged as strided (using StridedArrayTag as third template parameter). This means that the array elements need not be consecutive in memory, making the view flexible to represent all kinds of subarrays and slices. In certain cases (which have become rare due to improvements of optimizer and processor technology), an array may be tagged with UnstridedArrayTag which indicates that the first array dimension is guaranteed to be unstrided, i.e. has consecutive elements in memory.

In addition to the member functions described here, MultiArrayView and its subclasses support arithmetic and algebraic functions via the module vigra::multi_math.

If you want to apply an algorithm requiring an image to a MultiArrayView of appropriate (2-dimensional) shape, you can create a vigra::BasicImageView that acts as a wrapper with the necessary interface – see Create BasicImageView from MultiArrayViews.

The template parameter are as follows

N: the array dimension
T: the type of the array elements
C: a tag determining if the array's inner dimension is strided
(the tag can be used to specialize algorithms for different memory
layouts, see \ref MultiArrayTags for details). Users normally need
not care about this parameter.

#include <vigra/multi_array.hxx>
Namespace: vigra

Examples:
composite.cxx, smooth_explicitly.cxx, subimage.cxx, subimage_tutorial.cxx, and transpose.cxx.

Member Typedef Documentation

typedef T value_type

the array's value type

reference type (result of operator[])

typedef const value_type& const_reference

const reference type (result of operator[] const)

typedef value_type* pointer

pointer type

typedef const value_type* const_pointer

const pointer type

typedef MultiArrayShape<actual_dimension>::type difference_type

difference type (used for multi-dimensional offsets and indices)

key type (argument of index operator array[i] – same as difference_type)

size type

difference and index type for a single dimension

typedef StridedScanOrderIterator<actual_dimension, T, T &, T *> iterator

scan-order iterator (StridedScanOrderIterator) type

typedef StridedScanOrderIterator<actual_dimension, T, T const &, T const *> const_iterator

const scan-order iterator (StridedScanOrderIterator) type

typedef vigra::detail::MultiIteratorChooser< StrideTag>::template Traverser<actual_dimension, T, T &, T *>::type traverser

traverser (MultiIterator) type

typedef vigra::detail::MultiIteratorChooser< StrideTag>::template Traverser<actual_dimension, T, T const &, T const *>::type const_traverser

const traverser (MultiIterator) type

typedef MultiArrayView<N, T, StrideTag> view_type

the view type associated with this array.

typedef MultiArray<N, T> matrix_type

the matrix type associated with this array.

Member Enumeration Documentation

the array's actual dimensionality. This ensures that MultiArrayView can also be used for scalars (that is, when N == 0). Calculated as:

actual_dimension = (N==0) ? 1 : N

Constructor & Destructor Documentation

default constructor: create an invalid view, i.e. hasData() returns false and size() is zero.

MultiArrayView ( const MultiArrayView< N, T, Stride > &  other)

construct from another array view. Throws a precondition error if this array has UnstridedArrayTag, but the innermost dimension of other is strided.

MultiArrayView ( const difference_type shape,
const_pointer  ptr 
)

construct from shape and pointer

MultiArrayView ( const difference_type shape,
const difference_type stride,
const_pointer  ptr 
)

Construct from shape, strides (offset of a sample to the next) for every dimension, and pointer. (Note that strides are not given in bytes, but in offset steps of the respective pointer type.)

MultiArrayView ( BasicImage< T, ALLOC > const &  image)

Construct from an old-style BasicImage.

Member Function Documentation

operator MultiArrayView< N, T, StridedArrayTag > ( ) const

Conversion to a strided view.

void reset ( )

Reset this MultiArrayView to an invalid state (as after default construction). Can e.g. be used prior to assignment to make a view object point to new data.

MultiArrayView& operator= ( MultiArrayView< N, T, StrideTag > const &  rhs)

Assignment. There are 3 cases:

  • When this MultiArrayView does not point to valid data (e.g. after default construction), it becomes a new view of rhs.
  • Otherwise, when the shapes of the two arrays match, the contents (i.e. the elements) of rhs are copied.
  • Otherwise, a PreconditionViolation exception is thrown.
MultiArrayView& operator= ( MultiArrayView< N, U, C1 > const &  rhs)

Assignment of a differently typed MultiArrayView. It copies the elements ofrhs or fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator= ( value_type const &  v)

Assignment of a scalar. Equivalent to MultiArrayView::init(v).

MultiArrayView& operator+= ( MultiArrayView< N, U, C1 > const &  rhs)

Add-assignment of a compatible MultiArrayView. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator-= ( MultiArrayView< N, U, C1 > const &  rhs)

Subtract-assignment of a compatible MultiArrayView. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator*= ( MultiArrayView< N, U, C1 > const &  rhs)

Multiply-assignment of a compatible MultiArrayView. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator/= ( MultiArrayView< N, U, C1 > const &  rhs)

Divide-assignment of a compatible MultiArrayView. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator+= ( T const &  rhs)

Add-assignment of a scalar.

MultiArrayView& operator-= ( T const &  rhs)

Subtract-assignment of a scalar.

MultiArrayView& operator*= ( T const &  rhs)

Multiply-assignment of a scalar.

MultiArrayView& operator/= ( T const &  rhs)

Divide-assignment of a scalar.

MultiArrayView& operator= ( multi_math::MultiMathOperand< Expression > const &  rhs)

Assignment of an array expression. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator+= ( multi_math::MultiMathOperand< Expression > const &  rhs)

Add-assignment of an array expression. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator-= ( multi_math::MultiMathOperand< Expression > const &  rhs)

Subtract-assignment of an array expression. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator*= ( multi_math::MultiMathOperand< Expression > const &  rhs)

Multiply-assignment of an array expression. Fails with PreconditionViolation exception when the shapes do not match.

MultiArrayView& operator/= ( multi_math::MultiMathOperand< Expression > const &  rhs)

Divide-assignment of an array expression. Fails with PreconditionViolation exception when the shapes do not match.

reference operator[] ( const difference_type d)

array access.

const_reference operator[] ( const difference_type d) const

array access.

MultiArrayView<N-M, T, StridedArrayTag> operator[] ( const TinyVector< MultiArrayIndex, M > &  d) const

equivalent to bindInner(), when M < N.

reference operator[] ( difference_type_1  d)

Array access in scan-order sense. Mostly useful to support standard indexing for 1-dimensional multi-arrays, but works for any N. Use scanOrderIndexToCoordinate() and coordinateToScanOrderIndex() for conversion between indices and coordinates.

Note: This function should not be used in the inner loop, because the conversion of the scan order index into a memory address is expensive (it must take into account that memory may not be consecutive for subarrays and/or strided arrays). Always prefer operator() if possible.

const_reference operator[] ( difference_type_1  d) const

Array access in scan-order sense. Mostly useful to support standard indexing for 1-dimensional multi-arrays, but works for any N. Use scanOrderIndexToCoordinate() and coordinateToScanOrderIndex() for conversion between indices and coordinates.

Note: This function should not be used in the inner loop, because the conversion of the scan order index into a memory address is expensive (it must take into account that memory may not be consecutive for subarrays and/or strided arrays). Always prefer operator() if possible.

difference_type scanOrderIndexToCoordinate ( difference_type_1  d) const

convert scan-order index to coordinate.

difference_type_1 coordinateToScanOrderIndex ( const difference_type d) const

convert coordinate to scan-order index.

reference operator() ( difference_type_1  x)

1D array access. Use only if N == 1.

reference operator() ( difference_type_1  x,
difference_type_1  y 
)

2D array access. Use only if N == 2.

3D array access. Use only if N == 3.

4D array access. Use only if N == 4.

5D array access. Use only if N == 5.

const_reference operator() ( difference_type_1  x) const

1D const array access. Use only if N == 1.

const_reference operator() ( difference_type_1  x,
difference_type_1  y 
) const

2D const array access. Use only if N == 2.

3D const array access. Use only if N == 3.

4D const array access. Use only if N == 4.

5D const array access. Use only if N == 5.

MultiArrayView& init ( const U &  init)

Init with a constant.

void copy ( const MultiArrayView< N, T, StrideTag > &  rhs)

Copy the data of the right-hand array (array shapes must match).

void copy ( const MultiArrayView< N, U, CN > &  rhs)

Copy the data of the right-hand array (array shapes must match).

void swap ( MultiArrayView< N, T, StrideTag > &  other)

Swap the pointers, shaes and strides between two array views.

This function must be used with care. Never swap a MultiArray (which owns data) with a MultiArrayView:

MultiArray<2, int> a(3,2), b(3,2);
MultiArrayView<2, int> va(a);
va.swap(b); // danger!

Now, a and b refer to the same memory. This may lead to a crash in their destructor, and in any case leaks b's original memory. Only use swap() on copied MultiArrayViews:

MultiArray<2, int> a(3,2), b(3,2);
MultiArrayView<2, int> va(a), vb(b);
va.swap(vb); // OK
void swapData ( MultiArrayView< N, T, StrideTag >  rhs)

swap the data between two MultiArrayView objects.

The shapes of the two array must match.

void swapData ( MultiArrayView< N, T2, C2 >  rhs)

swap the data between two MultiArrayView objects.

The shapes of the two array must match.

bool isUnstrided ( unsigned int  dimension = N-1) const

check whether the array is unstrided (i.e. has consecutive memory) up to the given dimension.

dimension can range from 0 ... N-1. If a certain dimension is unstrided, all lower dimensions are also unstrided.

MultiArrayView< N-M, T, StrideTag > bindOuter ( const TinyVector< Index, M > &  d) const

bind the M outmost dimensions to certain indices. this reduces the dimensionality of the image to max { 1, N-M }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 1D array by fixing index 1 to 12, and index 2 to 10
MultiArrayView <1, double> array1 = array3.bindOuter(TinyVector<MultiArrayIndex, 2>(12, 10));
MultiArrayView< N-M, T, StridedArrayTag > bindInner ( const TinyVector< Index, M > &  d) const

bind the M innermost dimensions to certain indices. this reduces the dimensionality of the image to max { 1, N-M }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 1D array by fixing index 0 to 12, and index 1 to 10
MultiArrayView <1, double, StridedArrayTag> array1 = array3.bindInner(TinyVector<MultiArrayIndex, 2>(12, 10));
MultiArrayView<N-1, T, typename vigra::detail::MaybeStrided<StrideTag, M>::type > bind ( difference_type_1  d) const

bind dimension M to index d. this reduces the dimensionality of the image to max { 1, N-1 }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 2D array by fixing index 1 to 12
MultiArrayView <2, double> array2 = array3.bind<1>(12);
// get a 2D array by fixing index 0 to 23
MultiArrayView <2, double, StridedArrayTag> array2a = array3.bind<0>(23);
MultiArrayView< N-1, T, StrideTag > bindOuter ( difference_type_1  d) const

bind the outmost dimension to a certain index. this reduces the dimensionality of the image to max { 1, N-1 }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 2D array by fixing the outermost index (i.e. index 2) to 12
MultiArrayView <2, double> array2 = array3.bindOuter(12);
MultiArrayView< N-1, T, StridedArrayTag > bindInner ( difference_type_1  d) const

bind the innermost dimension to a certain index. this reduces the dimensionality of the image to max { 1, N-1 }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 2D array by fixing the innermost index (i.e. index 0) to 23
MultiArrayView <2, double, StridedArrayTag> array2 = array3.bindInner(23);
MultiArrayView< N-1, T, StridedArrayTag > bindAt ( difference_type_1  m,
difference_type_1  d 
) const

bind dimension m to index d. this reduces the dimensionality of the image to max { 1, N-1 }.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a 2D array by fixing index 2 to 15
MultiArrayView <2, double, StridedArrayTag> array2 = array3.bindAt(2, 15);
MultiArrayView<N, typename ExpandElementResult<T>::type, StridedArrayTag> bindElementChannel ( difference_type_1  i) const

Create a view to channel 'i' of a vector-like value type. Possible value types (of the original array) are: TinyVector, RGBValue, FFTWComplex, and std::complex. The list can be extended to any type whose memory layout is equivalent to a fixed-size C array, by specializing ExpandElementResult.

Usage:

MultiArray<2, RGBValue<float> > rgb_image(Shape2(w, h));
MultiArrayView<2, float, StridedArrayTag> red = rgb_image.bindElementChannel(0);
MultiArrayView<2, float, StridedArrayTag> green = rgb_image.bindElementChannel(1);
MultiArrayView<2, float, StridedArrayTag> blue = rgb_image.bindElementChannel(2);
MultiArrayView< N+1, typename ExpandElementResult< T >::type, StridedArrayTag > expandElements ( difference_type_1  d) const

Create a view where a vector-like element type is expanded into a new array dimension. The new dimension is inserted at index position 'd', which must be between 0 and N inclusive.

Possible value types of the original array are: TinyVector, RGBValue, FFTWComplex, std::complex, and the built-in number types (in this case, expandElements is equivalent to insertSingletonDimension). The list of supported types can be extended to any type whose memory layout is equivalent to a fixed-size C array, by specializing ExpandElementResult.

Usage:

MultiArray<2, RGBValue<float> > rgb_image(Shape2(w, h));
MultiArrayView<3, float, StridedArrayTag> multiband_image = rgb_image.expandElements(2);
MultiArrayView< N+1, T, StrideTag > insertSingletonDimension ( difference_type_1  i) const

Add a singleton dimension (dimension of length 1).

Singleton dimensions don't change the size of the data, but introduce a new index that can only take the value 0. This is mainly useful for the 'reduce mode' of transformMultiArray() and combineTwoMultiArrays(), because these functions require the source and destination arrays to have the same number of dimensions.

The range of i must be 0 <= i <= N. The new dimension will become the i'th index, and the old indices from i upwards will shift one place to the right.

Usage:

Suppose we want have a 2D array and want to create a 1D array that contains the row average of the first array.

typedef MultiArrayShape<2>::type Shape2;
MultiArray<2, double> original(Shape2(40, 30));
typedef MultiArrayShape<1>::type Shape1;
MultiArray<1, double> rowAverages(Shape1(30));
// temporarily add a singleton dimension to the destination array
transformMultiArray(srcMultiArrayRange(original),
destMultiArrayRange(rowAverages.insertSingletonDimension(0)),
FindAverage<double>());
MultiArrayView<N, Multiband<value_type>, StrideTag> multiband ( ) const

create a multiband view for this array.

The type MultiArrayView<N, Multiband<T> > tells VIGRA algorithms which recognize the Multiband modifier to interpret the outermost (last) dimension as a channel dimension. In effect, these algorithms will treat the data as a set of (N-1)-dimensional arrays instead of a single N-dimensional array.

MultiArrayView<1, T, StridedArrayTag> diagonal ( ) const

Create a view to the diagonal elements of the array.

This produces a 1D array view whose size equals the size of the shortest dimension of the original array.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a view to the diagonal elements
MultiArrayView <1, double, StridedArrayTag> diagonal = array3.diagonal();
assert(diagonal.shape(0) == 20);
MultiArrayView subarray ( difference_type  p,
difference_type  q 
) const

create a rectangular subarray that spans between the points p and q, where p is in the subarray, q not. If an element of p or q is negative, it is subtracted from the correspongng shape.

Usage:

// create a 3D array of size 40x30x20
typedef MultiArray<3, double>::difference_type Shape;
MultiArray<3, double> array3(Shape(40, 30, 20));
// get a subarray set is smaller by one element at all sides
MultiArrayView <3, double> subarray = array3.subarray(Shape(1,1,1), Shape(39, 29, 19));
// specifying the end point with a vector of '-1' is equivalent
MultiArrayView <3, double> subarray2 = array3.subarray(Shape(1,1,1), Shape(-1, -1, -1));
Examples:
composite.cxx, smooth_explicitly.cxx, and subimage.cxx.
MultiArrayView<N, T, StridedArrayTag> stridearray ( const difference_type s) const

apply an additional striding to the image, thereby reducing the shape of the array. for example, multiplying the stride of dimension one by three turns an appropriately laid out (interleaved) rgb image into a single band image.

MultiArrayView<N, T, StridedArrayTag> transpose ( ) const

Transpose an array. If N==2, this implements the usual matrix transposition. For N > 2, it reverses the order of the indices.

Usage:

MultiArray<2, double> array(10, 20);
MultiArrayView<2, double, StridedArrayTag> transposed = array.transpose();
for(int i=0; i<array.shape(0), ++i)
for(int j=0; j<array.shape(1); ++j)
assert(array(i, j) == transposed(j, i));
Examples:
transpose.cxx.
MultiArrayView<N, T, StridedArrayTag> transpose ( const difference_type permutation) const

Permute the dimensions of the array. The function exchanges the orer of the array's axes without copying the data. Argumentpermutation specifies the desired order such that permutation[k] = j means that axis j in the original array becomes axis k in the transposed array.

Usage:

MultiArray<2, double> array(10, 20);
MultiArrayView<2, double, StridedArrayTag> transposed = array.transpose(Shape(1,0));
for(int i=0; i<array.shape(0), ++i)
for(int j=0; j<array.shape(1); ++j)
assert(array(i, j) == transposed(j, i));
MultiArrayView< N, T, StridedArrayTag > permuteStridesAscending ( ) const

Permute the dimensions of the array so that the strides are in ascending order. Determines the appropriate permutation and then calls permuteDimensions().

MultiArrayView< N, T, StridedArrayTag > permuteStridesDescending ( ) const

Permute the dimensions of the array so that the strides are in descending order. Determines the appropriate permutation and then calls permuteDimensions().

difference_type strideOrdering ( ) const

Compute the ordering of the strides in this array. The result is describes the current permutation of the axes relative to the standard ascending stride order.

MultiArrayView< N, T, StrideTag >::difference_type strideOrdering ( difference_type  strides)
static

Compute the ordering of the given strides. The result is describes the current permutation of the axes relative to the standard ascending stride order.

difference_type_1 elementCount ( ) const

number of the elements in the array.

difference_type_1 size ( ) const

number of the elements in the array. Same as elementCount(). Mostly useful to support the std::vector interface.

const difference_type& shape ( ) const

return the array's shape.

return the array's size at a certain dimension.

return the array's shape at a certain dimension (same as size(n)).

difference_type_1 width ( ) const

return the array's width (same as shape(0)).

difference_type_1 height ( ) const

return the array's height (same as shape(1)).

const difference_type& stride ( ) const

return the array's stride for every dimension.

difference_type_1 stride ( int  n) const

return the array's stride at a certain dimension.

bool operator== ( MultiArrayView< N, U, C1 > const &  rhs) const

check whether two arrays are elementwise equal.

bool operator!= ( MultiArrayView< N, U, C1 > const &  rhs) const

check whether two arrays are not elementwise equal. Also true when the two arrays have different shapes.

bool isInside ( difference_type const &  p) const

check whether the given point is in the array range.

bool isOutside ( difference_type const &  p) const

check whether the given point is not in the array range.

bool all ( ) const

Check if the array contains only non-zero elements (or if all elements are 'true' if the value type is 'bool').

bool any ( ) const

Check if the array contains a non-zero element (or an element that is 'true' if the value type is 'bool').

void minmax ( T *  minimum,
T *  maximum 
) const

Find the minimum and maximum element in this array. See Feature Accumulators for a general feature extraction framework.

void meanVariance ( U *  mean,
U *  variance 
) const

Compute the mean and variance of the values in this array. See Feature Accumulators for a general feature extraction framework.

U sum ( ) const

Compute the sum of the array elements.

You must provide the type of the result by an explicit template parameter:

MultiArray<2, UInt8> A(width, height);
double sum = A.sum<double>();
Examples:
smooth_explicitly.cxx.
void sum ( MultiArrayView< N, U, S >  sums) const

Compute the sum of the array elements over selected axes.

  • sums must have the same shape as this array, except for the axes along which the sum is to be accumulated. These axes must be singletons. Note that you must include multi_pointoperators.hxx for this function to work.

Usage:

#include <vigra/multi_array.hxx>
#include <vigra/multi_pointoperators.hxx>
MultiArray<2, double> A(Shape2(rows, cols));
... // fill A
// make the first axis a singleton to sum over the first index
MultiArray<2, double> rowSums(Shape2(1, cols));
A.sum(rowSums);
// this is equivalent to
transformMultiArray(srcMultiArrayRange(A),
destMultiArrayRange(rowSums),
FindSum<double>());
U product ( ) const

Compute the product of the array elements.

You must provide the type of the result by an explicit template parameter:

MultiArray<2, UInt8> A(width, height);
double prod = A.product<double>();
NormTraits<MultiArrayView>::SquaredNormType squaredNorm ( ) const

Compute the squared Euclidean norm of the array (sum of squares of the array elements).

NormTraits< MultiArrayView< N, T, StrideTag > >::NormType norm ( int  type = 2,
bool  useSquaredNorm = true 
) const

Compute various norms of the array. The norm is determined by parameter type:

  • type == 0: maximum norm (L-infinity): maximum of absolute values of the array elements
  • type == 1: Manhattan norm (L1): sum of absolute values of the array elements
  • type == 2: Euclidean norm (L2): square root of squaredNorm() when useSquaredNorm is true,
    or direct algorithm that avoids underflow/overflow otherwise.

Parameter useSquaredNorm has no effect when type != 2. Defaults: compute L2 norm as square root of squaredNorm().

pointer data ( ) const

return the pointer to the image data

bool hasData ( ) const

returns true iff this view refers to valid data, i.e. data() is not a NULL pointer. (this is false after default construction.)

iterator begin ( )

returns a scan-order iterator pointing to the first array element.

const_iterator begin ( ) const

returns a const scan-order iterator pointing to the first array element.

iterator end ( )

returns a scan-order iterator pointing beyond the last array element.

const_iterator end ( ) const

returns a const scan-order iterator pointing beyond the last array element.

traverser traverser_begin ( )

returns the N-dimensional MultiIterator pointing to the first element in every dimension.

const_traverser traverser_begin ( ) const

returns the N-dimensional MultiIterator pointing to the const first element in every dimension.

traverser traverser_end ( )

returns the N-dimensional MultiIterator pointing beyond the last element in dimension N, and to the first element in every other dimension.

const_traverser traverser_end ( ) const

returns the N-dimensional const MultiIterator pointing beyond the last element in dimension N, and to the first element in every other dimension.

Member Data Documentation

difference_type m_shape
protected

the shape of the image pointed to is stored here.

difference_type m_stride
protected

the strides (offset of a sample to the next) for every dimension are stored here.

pointer m_ptr
protected

pointer to the image.


The documentation for this class was generated from the following file:

© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de)
Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

html generated using doxygen and Python
vigra 1.11.1 (Fri May 19 2017)