[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]
OOB_Error Class Reference |
#include <vigra/random_forest/rf_visitors.hxx>
Public Member Functions | |
template<class RF , class PR > | |
void | visit_at_end (RF &rf, PR &pr) |
Public Member Functions inherited from VisitorBase | |
double | return_val () |
template<class Tree , class Split , class Region , class Feature_t , class Label_t > | |
void | visit_after_split (Tree &tree, Split &split, Region &parent, Region &leftChild, Region &rightChild, Feature_t &features, Label_t &labels) |
template<class RF , class PR , class SM , class ST > | |
void | visit_after_tree (RF &rf, PR &pr, SM &sm, ST &st, int index) |
template<class RF , class PR > | |
void | visit_at_beginning (RF const &rf, PR const &pr) |
template<class RF , class PR > | |
void | visit_at_end (RF const &rf, PR const &pr) |
template<class TR , class IntT , class TopT , class Feat > | |
void | visit_external_node (TR &tr, IntT index, TopT node_t, Feat &features) |
template<class TR , class IntT , class TopT , class Feat > | |
void | visit_internal_node (TR &, IntT, TopT, Feat &) |
Public Attributes | |
double | oob_breiman |
Visitor that calculates the oob error of the ensemble
This rate serves as a quick estimate for the crossvalidation error rate. Here, each sample is put down the trees for which this sample is OOB, i.e., if sample #1 is OOB for trees 1, 3 and 5, we calculate the output using the ensemble consisting only of trees 1 3 and 5.
Using normal bagged sampling each sample is OOB for approx. 33% of trees. The error rate obtained as such therefore corresponds to a crossvalidation rate obtained using a ensemble containing 33% of the trees.
void visit_at_end | ( | RF & | rf, |
PR & | pr | ||
) |
Normalise variable importance after the number of trees is known.
double oob_breiman |
Ensemble oob error rate
© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de) |
html generated using doxygen and Python
|